

MEMORIA DE CÁLCULO. INSTALACIÓN ELÉCTRICA.

Ref. AC_Rev. 01 Marzo 2018.

		CESI	ALTAMIRA		
AL-E-MC FECHA: 06/03/2018	TITULO: MEMORIA DESC		Y DE CÁLCULO LÉCTRICA	DE INST <i>E</i>	NLACIÓN
ADJUNTO:		COPIAS	CONSTRUCTOR 1		

Índice

1	IN	NTRODUCCIÓN Y OBJETIVO	3
2	Р	ROYECTO ELÉCTRICO	3
	2.1	Normas y reglamentos aplicables.	3
	2.2	Descripción del proyecto.	3
3	M	IEMORIA DE CALCULO DE LA INSTALACION ELECTRICA	4
	3.1	1 Cálculos en baja tensión.	4
	;	3.1.1 Selección de equipos primarios.	4
	3	.1.2- Intensidad máxima admisible Alimentador Principal.	5
	3	.1.3 -Cálculo de la caída de tensión Alimentador Principal.	7
	3.	1.4 -Cálculo de circuitos derivados por intensidad de corriente y caída de tensión	. 8
	3.2 (Cálculos generales de la instalación.	Ś
	3	.2.1-Cálculo de las protecciones.	ć
	3	.2.2-Cálculo de los conductores del circuito.	10
	3	.2.3 Cálculo y selección de las canalizaciones de circuito.	11
	3	.2.4-Puesta a tierra.	12
	3.2.5	S-Selección del Transformador en base al criterio de CFE.	13
	3.2.6	S-Sistema de Protección contra tormentas eléctricas.	13
	3.3-0	Cálculo de Corto Circuito.	16
	3.4-	ANEXO 1: Cuadros de Carga.	18
	3.5-	ANEXO 2: Diagrama Unifilar.	21

1 INTRODUCCIÓN Y OBJETIVO

El proyecto denominado CESI Y ALTAMIRA consiste en la construcción de un área de oficinas denominadas CESI respectivamente.

El diseño eléctrico para este nivel se realiza en base a las normas para instalaciones eléctricas descritas más adelante y los requerimientos del cliente.

Se presenta a continuación una memoria descriptiva que se complementa con los planos de la ingeniería desarrollada para el área eléctrica.

2 PROYECTO ELÉCTRICO

2.1 NORMAS Y REGLAMENTOS APLICABLES

Para la elaboración de este documento y el plano correspondiente, se han tomado como base las siguientes Normas para la instalación eléctrica.

- NOM-001 SEDE 2012 Instalaciones Eléctricas.
- NOM-013 ENER 2013 Eficiencia energética para sistemas de alumbrado en vialidades.
- NOM-007 ENER 2014 Eficiencia energética para sistemas de alumbrado en edificios no residenciales.
- NOM-025-STPS 2008 Condiciones de Iluminación en los centros de trabajo.

Para la contratación del servicio con CFE se considera una acometida en media tensión con transición aérea subterránea en 13.8 kV en el límite del predio. La cual se deberá verificar con un estudio de factibilidad de la tensión de suministro proporcionado por CFE.

2.2 Descripción del proyecto

Partimos de la acometida en media tensión a 13.8kV transición aérea subterránea alimentando el lado primario del transformador tipo pedestal de 112.5 kVA, obteniendo una tensión del secundario de 220/127V, posteriormente pasa a un interruptor principal, y de ahí al tablero principal TG1, donde se alimentan los tableros N, F Y ELEVADOR en servicio normal. Del tablero TG1 sale un circuito que se conecta a una UPS que alimentara y respaldara al tablero de emergencia E.

3.- MEMORIA DE CÁLCULO DE LA INSTALACIÓN ELÉCTRICA

3.1 CÁLCULOS DE BAJA TENSIÓN

3.1.1 <u>Selección de equipos primarios.</u>

Para seleccionar los equipos primarios de la instalación eléctrica necesitamos los datos detallados de las diferentes tipos de cargas que se instalaran, a continuación se realiza una tabla con la relación de cargas para el dimensionamiento del Transformador, Planta de Emergencia y UPS.

CARGA	CARGA INSTALADA KW	F.D.	F.P	DEMANDA MAXIMA KW	KVA	TR-KVA COMERCIAL
TAB. "N"	8,942.00	0.8	0.9	7,354.00	8,171.11	
TAB. "E"	13,089.00	0.8	0.9	10,357.00	11,507.78	
TAB. "F"	56,239.00	0.9	0.9	50,615.00	56,238.89	
ELEVADOR	10,600.00	1.0	0.9	10,600.00	11,777.78	
TOTAL	88,870.00			78,926.00	87,695.56	112.5 KVA

TRANSFORMADOR COMERCIAL PROPUESTO PARA LA CARGA DEMANDADA ES DE 112.5 KVA MARCA PROLEC, RADIAL, 13.8 KV /220-127V DELTA – ESTRELLA.

CARGA	CARGA INSTALADA KW	F.D.	F.P	DEMANDA MAXIMA KW	KVA	UPS KVA
TAB. "E"	13,089.00	0.8	0.9	10,357.00	11,507.78	
TOTAL	13,089.00			10,357.00	11,507.78	20KVA

UPS PROPUESTA DE 20 KVA MARCA EATON.

3.1.2- Intensidad máxima admisible Alimentador Principal.

Se aplicará para el cálculo por calentamiento lo expuesto en las tablas 310-15(d) 310-15(g) y 310-16 de la NOM y a las tablas de fabricante. La intensidad máxima que debe circular por un cable para que éste no se deteriore viene indicada en tablas. En función de la instalación adoptada y del tipo de cable, se elegirá la tabla de intensidades máximas que hay que utilizar.

La intensidad máxima admisible se ve afectada por una serie de factores como son la temperatura ambiente, la agrupación de varios cables, la exposición al sol, etc., que, generalmente, reducen su valor.

La distribución se realizará de tres maneras:

- En tubo en falso plafón
- En tubo empotrado en pared
- En tubo subterráneo
- En charola eléctrica tipo escalera

El tipo de tubo utilizado es:

- Tubo conduit pared gruesa pvc para trayectorias subterráneas o embebidas en loza
- Tubo conduit pared delgada para trayectorias visibles, en plafón o embebidas en muro falso
- Liquid Tight para trayectorias finales a equipos de HVAC, salidas a luminarias y equipos especiales
- Cable forrado sin canalización para bajadas a luminarias colgantes
- Ducto cuadrado embisagrado de 6" para llegada a tableros

La capacidad de los tubos y los factores de corrección por temperatura y agrupación de conductores en el mismo tubo se han calculado de acuerdo a las tablas 10.1 y 10.4 del capítulo 10 de la NOM.

Para determinar la intensidad de corriente máxima que admiten los cables se aplicarán los factores reductores por agrupación correspondientes a cada tipo de instalación. Aplicando este factor de corrección a la intensidad máxima que admiten los cables, se obtiene la intensidad máxima real. Este valor se comparará con el de la intensidad nominal que va a circular por los cables para comprobar que la sección elegida es la adecuada.

La intensidad de corriente que circula por un circuito viene dada por las siguientes expresiones:

$$I = \frac{P}{\sqrt{3} \cdot U Cos \varphi}$$
 (Circuito trifásico a 3 fases)

$$I = \frac{P}{2 \cdot U Cos \varphi} \text{ (Circuito trifásico a 2 fases)}$$

$$I = \frac{P}{U \cdot Cos\varphi}$$
 (Circuito monofásico)

Dónde:

P Potencia activa del consumo eléctrico que se alimenta [W]

• U Tensión de alimentación [V]:127V (monofásica) y [V]: 220V (trifásica).

• I Intensidad [A]

Cos φ
 Factor de potencia

DESARROLLO MATEMÁTICO:

Calculando la Corriente de la Carga Demandada:

$$I = \frac{78926(W)}{\sqrt{3} \cdot 220(V) * (0.9)} = 230.14A$$

(CONSIDERANDO 78.9 kW carga demandada en TG)

Con base a las tablas de la NOM-001-SEDE-2012 se realiza el cálculo del Alimentador principal.

- Ajuste del valor de corriente por agrupamiento en configuración triangular sección 318-11 FCA = 1
- Selección de la temperatura de operación para el aislamiento THHW-90°, en ambiente seco, ver tabla 310-104(a). Temperatura de operación = 90 °C
- Ajuste del valor de corriente por temperatura ambiente del aislamiento tabla 310-15(b)(2)(b) T AMB = 40°C AISLAMIENTO THHW-90°C I corregida = 230.14 /1 = 230.14 A.
- Selección del tamaño mínimo del conductor por capacidad de corriente.
 Tabla 310-15(b)(20) 500 KCM 496A THHW-75°C > 230.14 A.
 500 KCM 380A THHW-75°C > 230.14 A.
- EL CONDUCTOR 500 KCM THHW-75°C ES ADECUADO

3.1.3 -Cálculo de la caída de tensión Alimentador Principal

La circulación de corriente a través de los conductores ocasiona una pérdida de potencial transportada por el cable, y una caída de tensión o diferencia entre las tensiones en el origen y extremo de la canalización. Esta caída de tensión debe ser inferior a los límites marcados por la NOM en cada parte de la instalación, con el objeto de garantizar el funcionamiento de los receptores alimentados por el cable, los cuales deben estar conectados a la tensión nominal para su correcto funcionamiento. Este criterio suele ser el determinante cuando las líneas son de larga longitud.

Este método permite limitar la caída de tensión acumulada en toda la instalación, fijando unas caídas de tensión máximas del 3% para los circuitos derivados de acuerdo a la NOTA 4, del Articulo 210-19 de la NOM y del 5 % para la caída de tensión total acumulada del receptáculo más alejado.

DESARROLLO MATEMÁTICO:

Con base a la NOM-001-SEDE-2012 se realiza el cálculo de caída de tensión del Alimentador principal por impedancia.

- Revisión por caída de tensión considerando L= 15 mts del alimentador 3-500 KCM
 + 1N-500 KCM, 1d-4 AWG.
- De la tabla 10-5 y 10-8 de la NOM obtenemos la impedancia del alimentador Z = 0.0845 ohm /1000m.
- Impedancia del conductor a 15 mts = 0.00126 ohm/m
- $e\% = 230.14 \text{A} \times 0.00126 = 0.289 \text{ V}$
- e% = (0.289 V/127 V)*100 = 0.227%
- EL CONDUCTOR 500 KCM THHW-75°C ES ADECUADO 0.227% < 2% SEGÚN LA NOM-001-SEDE-2012.

3.1.4 - Cálculo de circuitos derivados por intensidad de corriente y caída de tensión.

Para el cálculo de corriente del circuito derivado se toma como ejemplo el circuito N6 del tablero "N", el cual tiene una carga instalada de 972W y una carga demandada de 778W, con una longitud de 10 mts.

$$I = \frac{P}{U \cdot Cos\varphi}$$
 (Circuito monofásico)
$$I = \frac{778(W)}{127(V)*(0.9)} = 6.80A$$

De la tabla 310-15(b)(16) seleccionamos el conductor 10 AWG.

Para el cálculo de la caída de tensión se empleó la siguiente fórmula:

$$\Delta U (\%) = \frac{4 \cdot I \cdot L}{SU} \qquad \text{(Sistema monofásico)} \qquad \qquad \Delta U = \frac{4 \cdot 6.8 \cdot 50}{127 (V) \cdot (5.26)} = 2.04$$

Dónde:

- ΔU Caída de tensión [%]
- U Tensión nominal
- L Longitud del cable, sólo ida [m]
- I Intensidad [A]
- S Sección transversal del conductor (mm2)

3.2 CÁLCULOS GENERALES DE LA INSTALACIÓN

Para realizar dicho cálculo se debe tomar en cuenta primero los tipos de carga incluidos en la instalación, siendo los que muestran las siguientes tablas:

DESCRIPCIÓN	CONSUMO (W)	VOLTAJE DE TRABAJO (V)
CONTACTO POLARIZADO DUPLEX	162	127
CONTACTO DE CON FALLA A TIERRA	162	127

La instalación de iluminación y contactos se divide eléctricamente en 2 tableros de distribución general (TG1 y Emergencia), que a su vez derivan en 6 tableros, 4 en sistema normal y 2 en sistema de emergencia.

3.2.1-Cálculo de las protecciones

Para el cálculo de las protecciones termomagnéticas se calculará primero la corriente demandada, para lo cual se utilizara la siguiente formula:

$$I = \frac{P}{U \cdot Cos\varphi} * 1.25$$
 (Circuito monofásico)

Dónde:

• P Potencia activa del consumo eléctrico que se alimenta [W]

• U Tensión de alimentación [V]:127V(monofásica)

• I Intensidad [A]

Cos φ Factor de potencia

El valor del factor de potencia se utilizará en 0.9 debido al tipo de cargas mayormente resistivos.

Y el valor de la corriente de protección se obtiene mediante la multiplicación de la corriente demandada por un factor de 1.25, posterior a esto se selecciona la protección con el valor comercial inmediato superior a la corriente obtenida.

DESARROLLO MATEMÁTICO:

$$I = \frac{78926(W)}{\sqrt{3} \cdot 220(V) * (0.9)} * 1.25 = 287.67A$$

PROTECCIÓN COMERCIAL DE 3 x 300AM, MGA36300 18KA (CORRIENTE PARA LA SELECCIÓN DE EL TERMOMAGNÉTICO PPAL DE TG)

3.2.2-Cálculo de los conductores del circuito

Para el cálculo y selección de los equipos se deberá plantear primero que el requerimiento de la instalación será la utilización de cableado de cobre, con calibre mínimo 12 AWG, aislamiento tipo THHN o THWN para 90°C y 600 volts.

A continuación se deberá seleccionar de la tabla 310-15(b)(16) de la NOM-SEDE-2012 (mostrada a continuación) basándose en los valores de corriente nominal calculados en el apartado anterior la ampacidad del conductor a utilizar.

Tabla 310-15(b)(16).- Ampacidades permisibles en conductores aislados para tensiones hasta 2000 volts y 60 °C a 90 °C. No más de tres conductores portadores de corriente en una canalización, cable o directamente enterrados, basados en una temperatura ambiente de 30 °C*

Tam	afio		Temperatu	ra nominal del oc	nduotor [Véase	la tabla 310-104(a)]	
design		60 °C	76 °C	80 °C	60 °C	76 °C	80 °C
mm²	AWG o komil	TIPOS TW, UF	TIPOS RHW, THHW, THHW-LS, THW-LS, THW-LS, THWN, XHHW, USE, ZW COBRE	TIPOS TBS, SA, SIS, FEP, FEPB, MI, RHH, RHW-2, THHW, THHW-1, S, THW-2, USE-2, XHH, XHHW, XHHW-2, ZW-2	TIPOS UF ALUMIN	TIPOS RHW, XHHW, USE IO O ALUMINIO REC DE COBRE	TIPOS SA, SIS, RHH, RHW-2, USE-2, XHH, XHHW, XHHW-2, ZW-2 UBIERTO
	18"		l			DE COBRE	
1.31	18 16"		_	14 18	_	_	_
2.08	14"	15	20	18 25		_	_
3.31	12"	20	25	30	_	_	_
5.26	10"	30	35	40		_	_
8.37	8	40	50	55	_	_	_
13.3	6	55	65	75	40	50	55
21.2 26.7	3	70 85	85 100	95 115	55 65	65 75	75 85
33.6	2	95		130	75	90	100
42.4	1	110	115	145	85	100	115
53.49	1/0	125	150	170	100	120	135
67.43	2/0	145	175	195	115	135	150
85.01	3/0	165	200	225	130	155	175
107.2	4/0	195	230	260	150	180	205
127	250	215	255	290	170	205	230
152	300	240	285	320	195	230	260 280
177	350	260	310	350	210	250	
203 253	400	280 320	335 380	380 430	225 260	270	305
	500					310	350
304 355	600 700	350 385	420 460	475 520	285 315	340 375	385 425
380	750	400	450	520	315	3/5	425
405	800	410	475	555	320	395	445
456	900	410	520	585	355	425	480
507 633	1000 1250	455 495	545 590	615 665	375 405	445 485	500 545
760	1500	495 525	625	705	435	485 520	585
887	1750	545	650	735	455	545	615
1013	2000	555	665	750	470	560	630
1013	2000	555	500	/50	4/0	560	630

Posteriormente se deberá verificar que los valores de ampacidad de los conductores cumplan con los parámetros de porcentaje de caída de tensión requeridos en la NOM-001-SEDE-2012, que indican no deberá ser un valor mayor al 3% en circuitos derivados y no más del 5% desde la acometida hasta la carga.

3.2.3-Cálculo y selección de las canalizaciones de circuito.

Se utilizará por normatividad del edificio como conducción principal tubería metálica tipo conduit, según lo referido en la tabla 1 a 4 del capítulo 10 de la NOM-001-SEDE-2012, mostradas a continuación, el dimensionamiento de la tubería se realizará como sigue.

				CONDU	CTORES	S						
Tipo	Tama design				Desi	gnación	métrica (Tamaño	comerci	al)		
	mm²	AWG o	16	21	27	35	41	53	63	78	91	103
	mm	kcmil	(1/2)	(¾)	(1)	(11/4)	(11/2)	(2)	(21/2)	(3)	(31/2)	(4)
RHH* RHW* RHW-2* THHW, THW THW-2	8.37	8	1	4	6	10	14	24	42	63	83	106
RHH, RHW, RHW-2 TW, THW, THHW, THW-2	13.3	6	1	3	4	8	11	18	32	48	63	81
	21.2	4	1	1	3	6	8	13	24	36	47	60
	26.7	3	1	1	3	5	7	12	20	31	40	52
	33.6	2	1	1	2	4	6	10	17	26	34	44
	42.4	1	1	1	1	3	4	7	12	18	24	31
	53.5	1/0	0	1	1	2	3	6	10	16	20	26
	67.4	2/0	0	1	1	1	3	5	9	13	17	22
	85.0	3/0	0	1	1	1	2	4	7	11	15	19
	107	4/0	0	0	1	1	1	3	6	9	12	16
	127	250	0	0	1	1	1	3	5	7	10	13
	152	300	0	0	1	1	1	2	4	6	8	11
	177	350	0	0	0	1	1	1	4	6	7	10
	203	400	0	0	0	1	1	1	3	5	7	9
	253	500	0	0	0	1	1	1	3	4	6	7
	304	600	0	0	0	1	1	1	2	3	4	6
	355	700	0	0	0	0	1	1	1	3	4	5
	380	750	0	0	0	0	1	1	1	3	4	5
	405	800	0	0	0	0	1	1	1	3	3	5
	456	900	0	0	0	0	0	1	1	2	3	4
	507	1000	0	0	0	0	0	1	1	2	3	4
	633	1250	0	0	0	0	0	1	1	1	2	3
	760	1500	0	0	0	0	0	1	1	1	1	2
THHN, THWN, THWN-2	2.08	14	12	22	35	61	84	138	241	364	476	608
	3.31	12	9	16	26	45	61	101	176	266	347	443
	5.26	10	5	10	16	28	38	63	111	167	219	279
	8.37	8	3	6	9	16	22	36	64	96	126	161
	13.3	6	2	4	7	12	16	26	46	69	91	116

3.2.4-Puesta a tierra

El calibre del conductor de puesta a tierra será seleccionada de acuerdo a la tabla 250-122 de la NOM-001-SEDE-2012 tomando en cuenta la protección del circuito de alimentación principal, mostrada a continuación:

Tabla 250-122.- Tamaño mínimo de los conductores de puesta a tierra para canalizaciones y equipos

Capacidad o ajuste del		Ta	amaño	
dispositivo automático de protección contra sobrecorriente en el circui		bre	I	aluminio o con cobre
antes de los equipos, canalizaciones, etc., sin exceder de: (amperes)	mm ²	AWG o kcmil	mm ²	AWG o kemil
15	2.08	14	_	_
20	3.31	12	_	_
60	5.26	10	_	_
100	8.37	8	_	_
200	13.30	6	21.20	4
300	21.20	4	33.60	2
400	33.60	2	42.40	1
500	33.60	2	53.50	1/0
600	42.40	1	67.40	2/0
800	53.50	1/0	85.00	3/0
1000	67.40	2/0	107	4/0
1200	85.00	3/0	127	250
1600	107	4/0	177	350
2000	127	250	203	400
2500	177	350	304	600
3000	203	400	304	600
4000	253	500	380	750
5000	355	700	608	1200
6000	405	800	608	1200

Los calibres seleccionados se muestran en los cuadros de carga en el anexo correspondiente.

3.2.5-SELECCION DEL TRANSFORMADOR EN BASE AL CRITERIO DE CFE.

El transformador se designara con respecto a la carga demandada y la ubicación asignada para la subestación, la cual será interior en planta de estacionamiento.

Carga demandada: 87.6 kVA

Para cumplir con los criterios de CFE en los que el transformador debe estar entre el 90% y el 60% de demanda.

 $87.6 \text{ KVA} / 112.5 \text{ KVA} = 77.8\% \approx 112.5 \text{kVA}$

Transformador tipo pedestal de 112.5kVA

3.2.6-SISTEMA DE PROTECCIÓN CONTRA TORMENTAS ELÉCTRICAS

Principalmente se analizara la necesidad de un sistema contra tormentas como lo indica en la **NMX-J-549-ANCE-2005**, por medio de la siguiente formula y tabla extraída de dicha norma.

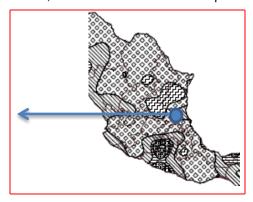
$$N_0 = N_a \times A_e \times 10^{-6}$$

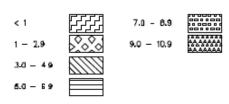
Dónde:

N_o= Frecuencia promedio anual de rayos a una estructura.

N_a= Densidad promedio anual de rayos a tierra

A_e= Área equivalente de captura en m²




TABLA 1.- Frecuencia media anual permitida de rayos directos sobre estructuras comunes

Estructuras comunes	Efectos de las tormentas eléctricas	Frecuencia (Na)
Residencia	Daño a instalación eléctrica, equipo y daños materiales a la estructura. Daño limitado a objetos expuestos en el punto de incidencia del rayo o sobre su trayectoria a tierra.	0,04
Granja	Riesgo principal de incendio y potenciales de paso. Riesgo secundario derivado de la pérdida de suministro eléctrico provocando posibles desperfectos por falla de controles de ventilación y de suministro de alimentos para animales.	0,02
Tanques de agua elevados: metálicos. Concreto con elementos metálicos salientes.	Daño limitado a objetos expuestos en el punto de incidencia del rayo o sobre su trayectoria a tierra, así como posibles daños al equipo de control de flujo de agua.	0,04
Edificios de servicios tales como: Aseguradoras, centros comerciales, aeropuertos, puertos marítimos, centros de espectáculos, escuelas, estacionamientos, centros deportivos, estaciones de autobuses, estaciones de trenes, estaciones de tren ligero o metropolitano.	Daño a las instalaciones eléctricas y pánico. Falla de dispositivos de control, por ejemplo alarmas. Pérdida de enlaces de comunicación, falla de computadoras y pérdida de información.	0,02
Hospital Asilo Reclusorio	Falla de equipo de terapia intensiva. Daño a las instalaciones eléctricas y pánico. Falla de dispositivos de control, por ejemplo alarmas. Pérdida de enlaces de comunicación, falla de computadoras y pérdida de información.	0,02
industria tales como: Máquinas herramientas, ensambladoras, textil, papelera, manufactura, almacenamiento no inflamable, fábrica de conductores, fábrica de electrodomésticos, armado equipo de cómputo, muebles, artefactos eléctricos, curtidurías, agrícola, cementeras, caleras, laboratorios y plantas bioquímicas, potabilizadoras.	Efectos diversos dependientes del contenido, variando desde menor hasta inaceptable y pérdida de producción.	0,01
Museos y sitios arqueológicos	Pérdida de vestigios culturales irremplazables	0,02
Edificios de telecomunicaciones Véase nota	Interrupciones inaceptables, pérdidas por daños a la electrónica, altos costos de reparación y pérdidas por falta de continuidad de servicio.	0,02

NOTAS

Para conocer la densidad promedio anual de rayos a tierra en la zona donde se instalara dicho sistema, se extrae la zona de un mapa de nivel isoceráunico de la república mexicana.

UNIDADES: No. de rayos / km cuadrado / año

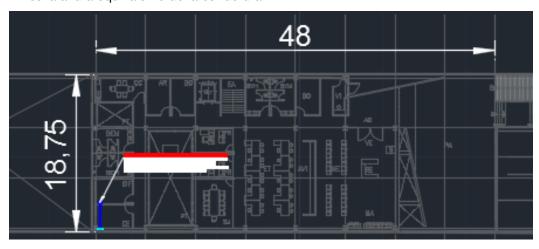
Nivel isoceraúnico de Altamira.

¹ Para cualquier estructura común debe evaluarse el nivel de riesgo en función de su localización, densidad, altura y área equivalente de captura, para decidir la protección.

² Para estructuras en zonas con densidad de rayos a tierra mayor a 2, y si el techo de la construcción es de material inflamable (madera o paja), debe instalarse un SEPTE.

Por ultimo para conocer el área equivalente de captura, se requiere la siguiente formula y datos.

$$A_{e} = ab + 6h_{e}(a+b) + 9\pi h^{2}$$


En donde:

A_e área equivalente de captura en m²

a longitud de uno de los lados de la estructura en m

b longitud del otro lado de la estructura en m

h_e es la altura equivalente de la estructura

Sustituyendo los valores en la formula.

 $A_e = (48 \times 18.75) + ((6 \times 5.22)(48+18.75)) + (9\pi \times 5.22^2) = 3,761m^2$

Sustituyendo en formula:

$$N_0 = N_g \times A_e \times 10^{-6}$$

$$N_0 = 3 \times 3761 \times 10^{-6} = 0.0112$$

Como podemos observar en la tabla 1 de la NMX-J-549, para edificios de servicios el valor mínimo es 0.02, por lo tanto estamos por debajo de la frecuencia media anual permitida.

Con esto demostramos que el pararrayos no es necesario para este proyecto.

3.3-CÁLCULO DE CORTO CIRCUITO

	MEMORIA	DE CAI CI	JLO T	DE CORTO	CIRCUI	TO		
	OBRA:	CESI ALT						
	ODIVI.	OLO! /\L!	/ (IVIII					
Capacidad T	ransformador	112.50	kVA	Voltaje entre	e fases	13.8	kV	
Corriente non		4.71	Α	Capacidad		10	K	
				Сарастааа	40 14015100			
LADO DE BA	AJATENSION							
Capacidad T	ransformador	112.5	kVA	Voltaje entre	e fases	220	V	
Corriente non	ninal	295.24	Α	1.25 x ln=	369.06	Α		
Capacidad de	e Interruptor term	nomagnetico		600	Α			
Temperatura	Ambiente	30	°C	Factor de Ter	mperatura :	1		
Corriente cor	regida / temp.	295.24	Α					
Tipo de carga	a mayoritaria	No lineal		Factor de Agr	upamiento:	1.00		
Corriente cor	regida / agrup.	295.24	Α					
Conductor se	eleccionado	500	AWG	Capacidad de	e Corriente:	380	Α	
Conductores	por fase:	1		Capacidad co	orregida :	380	Α	
Sección trans	sversal	253.00	mm²					
Tipo de canal	lización	Fe		Impedancia	conductor:	0.15	Ω/km	
Distancia del	conductor:	15	m					
Caída de tens	sión por Impe.	0.52	%	Conductor ele	ectrodo de ti	erra		
Caída tensiór	n / Resistencia	0.28	%	Conductor pues	sta a tierra de	equipos		
Capacidad T	ransformador	112.5	kVA					
Corriente ne	ominal	295.24	Α		Z=	5.00	%	
I cc sim =	5,904.89	Α		Corriente as	simétrica	7,381.11	Α	
Carga Instala	da	88,870	W	Factor de der	manda:	0.88		
Carga Deman	dada	78,926	W	Voltaje entre f	ases	220	V	
Corriente non	ninal	230.15	Α	1.25 x ln=	287.68	Α		
Capacidad de	e Interruptor term	nomagnetico		300	Α			
Temperatura		30	°C	Factor de Ter	mperatura :	1		
	regida / temp.	230.15	Α					
Tipo de carga	•	No lineal		Factor de Agr	1	1.00		
	regida / agrup.	230.15	Α		Α		_	
Conductor se		500	AWG	Capacidad de (380	Α	_
Conductores		1		Capacidad corr	egida :	380	Α	
Sección trans		253.00	mm²		. 1 . 4 .	0.45	0/1/	
Tipo de canal		Fe 45		Impedancia cor	nductor:	0.15	Ω/Km	
Distancia del	conductor: sión por Impe.	15 0.90	m V	0.44	%			
Caída da tara		0.90	V	0.41	7/0			

DESARROLLO MATEMÁTICO:

Debido a que no se cuenta con el dato preciso de la corriente de corto circuito en el punto de conexión por la compañía suministradora, se considera un valor promedio para realizar nuestro cálculo, el cual será de 5,000 A.

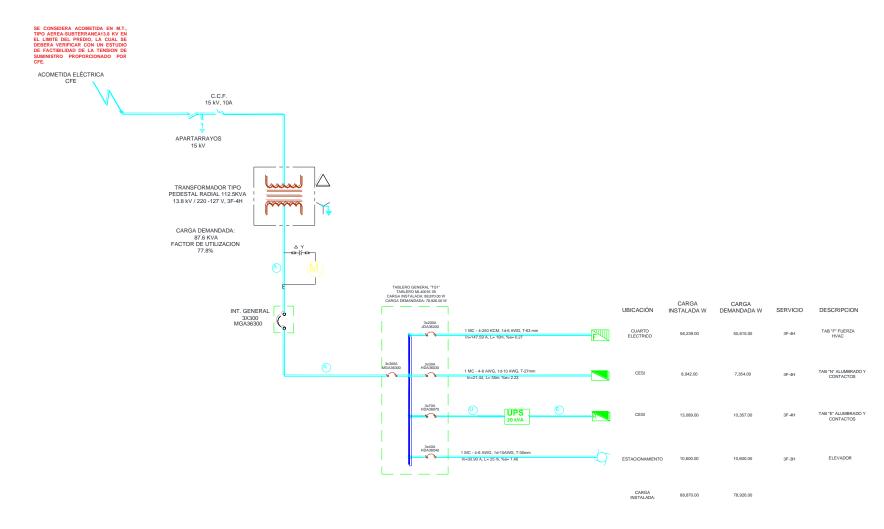
De acuerdo a nuestra carga conectada se cuenta con una corriente de 259 A, alimentada por transformador de 112.5 KVA a 13.8 KV – 220/127V. Para realizar nuestro cálculo de manera práctica se toma el valor de la corriente nominal la cual es de 259 A y se multiplica por 5.

Obtenemos un valor de 1295 A la cual es el valor de corriente de corto circuito de nuestra carga, adicionalmente se le suma el valor de corriente de corto circuito promedio de la compañía suministradora la cual será de 5,000 A.

Nuestro resultado obtenido es de 6295 A o 6.2 KA este valor es la corriente de corto circuito total obtenida. Al realizar una comparación de este resultado con el obtenido en nuestro programa de simulación concluimos que el valor de corriente de corto circuito es muy parecido ubicándose en un rango de los 5KA y los 7KA.

3.4-ANEXO 1: CUADROS DE CARGA

PROYECTO:	INFONAVIT P	POVECTO	CESIALT	TA MID A			LOCALIZACIÓN:	AL TAMIDA																		$\overline{}$
DESCRIPCIÓN:	CENTRO DE							TAB "N"																		
SISTEMA:	3F-4H, 220/12		OWIDITAD	0 1 0	JIVIA		TABLERO SELECCIO		NQ184AB100 CA	DACIDAD 100A																
VIENE DE:	,	O V								FACIDAD 100A																
VIENE DE:	TG1			1		1	CORRIENTE TOTAL:		26.07A		ı —		CORRIENTE	1				_								
FOLUDO	CONTACTO					LUMINARIA		POTENCIA	FACTOR DE	POTENCIA	V	- 1	DE					RES DE ECCIÓN	le	LONGITUD	CALIBRE	SECCIÓN	CAÍDA DE TENSIÓN	P	OTENCI	Α
EQUIPO	DUPLEX 127 V	L2	L3	L4	L6	WALL PACK	FP	INSTALADA	DEMANDA	DEMANDADA			PROTECCIÓ	l				ECCION					TENSION			
													N	PR	OTEC			TEMPERATU								ıl
VA	180	10	17	54	24	78		w		w	V	Α	Α				ENTO	RADE 30°C	Α	m	AWG	mm ²	e%	FA	FB	FC
W	162	9	15	49	22	70								<u> </u>												ш
CTO. / POLO														Ш	_											⊢
N-1(1)		7					0.9	63	1.00	63		0.55	0.69		x 15		0.80	1.00	0.55	25	12	3.31	0.13	63		-
N-2(2)		2	4	4	3		0.9	340	1.00	340		2.97	3.71		x 15		0.80	1.00	2.97	28	12	3.31	0.79	340		<u> </u>
N-3(3)		9					0.9	81	1.00	81		0.70	0.88	_	x 15		0.80	1.00	0.70	50	12	3.31	0.33		81	
N-4(4)			16				0.9	240	1.00	240	127	2.09	2.61	1	x 15	Α	0.80	1.00	2.09	30	12	3.31	0.60		240	
N-5(5)	5						0.9	810	0.80	648	127	5.66	7.08	1	x 15	Α	0.80	1.00	5.66	33	10	5.26	1.12			810
N-6(6)	6						0.9	972	0.80	778	127	6.80	8.50	1	x 15	Α	0.80	1.00	6.80	50	10	5.26	2.04			972
N-7(7)	6						0.9	972	0.80	778	127	6.80	8.50	1	x 15	Α	0.80	1.00	6.80	30	10	5.26	1.22	972		
N-8(8)	5						0.9	810	0.80	648	127	5.66	7.08	1	x 15	Α	0.80	1.00	5.66	30	10	5.26	1.02	810		
N-9(9)	5						0.9	810	0.80	648	127	5.66	7.08	1	x 15	Α	0.80	1.00	5.66	30	10	5.26	1.02		810	
N-10(10)	5						0.9	810	0.80	648	127	5.66	7.08	1	x 15	Α	0.80	1.00	5.66	30	10	5.26	1.02		810	
N-11(11)	3						0.9	486	0.80	389	127	3.40	4.25	1	x 15	Α	0.80	1.00	3.40	35	10	5.26	0.71			486
N-12(12)	5						0.9	810	0.80	648	127	5.66	7.08	1	x 15	Α	0.80	1.00	5.66	35	10	5.26	1.19			810
N-13(13)	5						0.9	810	0.80	648	127	5.66	7.08	1	x 15	Α	0.80	1.00	5.66	50	10	5.26	1.69	810		
N-14(16)	4						0.9	648	0.80	518	127	4.53	5.66	1	x 15	Α	0.80	1.00	4.53	34	10	5.26	0.92		648	
N-15(15)						4	0.9	280	1.00	280	127	2.44	3.05	1	x 15	Α	0.80	1.00	2.44	27	12	3.31	0.63		410	1
														П												
CANTIDAD	49	18	20	4	3	4								П												
W	8,820	162	300	196	66	280																				
VA	7,938	180	333	218	73	312																		2995	2999	3078
															•											
		W	VA	1				FACTOR I	DE DEMANDA	0.86	Ì															i
POTENCIA INSTALA	ADA	8942.00	9935.56	1				DESBALA		2.69%																i
POTENCIA DEMANI		7354.40		1					-																	i
CARGA FUTURA TO			8580.13	1																						ľ
STATES TO TOTAL	, , , <u>, _</u>		0000.10																							


PROYECTO:	-	NFONA'	VIT PROYE	СТО СЕ	SIAL	TAMIRA			LOCALIZACIO	N: ALTAMIRA																	
DESCRIPCIÓN:			DE CARG				A		TAG:	TAB "E"																	
SISTEMA:			20/120 V						TABLERO SELI		NQ184AB	100 CAPA	CIDAD 10	OA.													
VIENE DE:	i	JPS							CORRIENTE TO																		
	(CONTAC	то				EQUIPO IT	FACTO			POTENCI	A _V	1	Τ,	CORRIENTE DE			FACTO	RES DE	le	LONGITUD	CALIBBE	CECCIÓN	CAÍDA D		POTEN	CIA
EQUIPO		DUPLE			L2	L3	POR OTRO	, DE	POTENCI		, DEMAND	A V	'		PROTECCIÓN			CORRE	CCIÓN	ie	LONGITUD	CALIBRE	SECCION	TENSIÓ	N '	FOIEN	JIM
		127 V	_					POTENC	A	, DEMOTES	` DA					PROTE	CCIÓN	AGRUPAMIE	TEMPERATU								
VA		180	5		10	17	2,778		w		w	V	Α		Α			NTO	RADE 30°C	Α	m	AWG	mm²	e%	FA	FB	F
W		162	4.5	5	9	15	2,500		**						^												
CTO. / POLC)																										
E-1(9)		5						0.9	810	0.80	648	127	5.66		7.08	1 x 1	5 A	0.80	1.00	5.66	28	10	5.26	0.95		810	
E-2(10)			10)	11	3		0.9	189	1.00	189	127	1.65		2.07	1 x 1	5 A	0.80	1.00	1.65	25	12	3.31	0.39		189	
E-3(3)		5						0.9	810	0.80	648	127	5.67		7.09		5 A	0.80	1.00	5.67	30	10	5.26	1.02		810	
E-4(4)			8		2			0.9	54	1.00	54	127	0.47		0.59	1 x 1	5 A	0.80	1.00	0.47	15	12	3.31	0.07		5	4
E-5(5)		6						0.9	972	0.80	778	127	6.80		8.50	1 x 1	5 A	0.80	1.00	6.80	25	10	5.26	1.02			97
E-6(6)		5						0.9	810	0.80	648	127	5.67		7.09	1 x 1	5 A	0.80	1.00	5.67	50	10	5.26	1.70			81
E-7(7)		5						0.9	810	0.60	486	127	4.25		5.31	1 x 1	5 A	0.80	1.00	4.25	50	10	5.26	1.27	810)	T
E-8(8)		7						0.9	1,134	0.80	907	127	7.94		9.92	1 x 1	5 A	0.80	1.00	7.94	50	10	5.26	2.38	1134	4	T
E-11,13(11,13	3)						1	0.9	2,500	0.80	2,000	220	8.74		10.93	2 x 1	5 A	0.80	1.00	8.74	50	10	5.26	1.31	1250	0 1250	ر
E-10,12(10,12							1	0.9	2,500	0.80	2,000	220	8.74		10.93	-	5 A	0.80	1.00	8.74	50	10	5.26	1.31		_	125
E15,17(15,17	_						1	0.9	2,500	0.80	2,000	220	8.74		10.93	2 x 1	_	0.80	1.00	8.74	50	10	5.26	1.31	1250		125
.,	_								,																		
														_		\top											1
CANTIDAD		33	18	3	13	3	3							\neg		\top				1							+
W		5,940	_	_	117	45	7,500							\neg													+
VA		5,346	_	_	130	51	8,334							\dashv											444	4 436	3 428
																									_		
				0.089,					FACTOR DE	DEMANDA GEI DEO=	0.79 3.65%	3		·													
POTENCIA DEM	IANDA	DA	13, 10,				_							·													
POTENCIA DEM	IANDA	DA	13, 10,	,089.0			_	-				}														-	
POTENCIA DEM CARGA FUTURA	A TOTA	DA AL	13, 10,	,089.0 ,357.8 ,875.7		LOC	ALIZACIÓN: /	ALTAMIRA				}															
POTENCIA DEM CARGA FUTURA PROYECTO:	A TOTA	DA AL NAVIT C	13, 10, 10,	,089.0 ,357.8 ,875.7		LOC.		ALTAMIRA JPS		CEO=		ESI														-	
POTENCIA DEM CARGA FUTURA PROYECTO: DESCRIPCIÓN:	IANDA A TOTA INFON TABLI	DA AL NAVIT C	13, 10, 10, ESIS ALTAN	,089.0 ,357.8 ,875.7		TAG		JPS		CEO=	3.65%	≡SI															
POTENCIA DEM CARGA FUTUR/ PROYECTO: DESCRIPCIÓN:	IANDA A TOTA INFON TABLI	DA AL NAVIT C ERO GE	13, 10, 10, ESIS ALTAN	,089.0 ,357.8 ,875.7		TAG:	: 1	JPS) : 20 kV <i>A</i>		CEO=	3.65%	≣SI												-	-		
POTENCIA DEM CARGA FUTURA PROYECTO: DESCRIPCIÓN: SISTEMA:	INFON TABLE 3F-4H	DA AL NAVIT C ERO GE	13, 10, 10, ESIS ALTAN	,089.0 ,357.8 ,875.7		TAG:	SELECCIONADO	JPS) : 20 kV <i>A</i>	DESBALAN	CEO=	3.65%										0.15.1.5						
POTENCIA DEM CARGA FUTURA PROYECTO: DESCRIPCIÓN: SISTEMA:	INFON TABLI 3F-4H TG1	DA AL NAVIT C ERO GE I, 220/12	13, 10, 10, ESIS ALTAN	,089.0 ,357.8 ,875.7	LY	TAG: UPS: CORF	SELECCIONADO	JPS D: 20 kVA ADA (A):	DESBALAN	U	3.65%	ORRIENT	E		FACTOR		ı	LONGITU	JELIMENTADOR	RE SECCI	ÓN CAÍDA I			ристо	PO	TENCIA	
POTENCIA DEM CARGA FUTURA PROYECTO: DESCRIPCIÓN: SISTEMA:	INFON TABLI 3F-4H TG1	DA AL NAVIT C ERO GE	13, 10, 10, ESIS ALTAM NERAL	,089.0 ,357.8 ,875.7		TAG: UPS: CORF	SELECCIONADO	JPS D: 20 kVA ADA (A):	38.16A	U	3.65% BICACIÓN: CE	ORRIENT			CORREC		b	.ONGITU	JELIMENTADOR	RE SECCI	ÓN CAÍDA E TENSIÓ	OR DE	EL PUE	DE	PO	TENCIA	
POTENCIA DEM CARGA FUTURA PROYECTO: DESCRIPCIÓN: SISTEMA:	INFON TABLI 3F-4H TG1	DA AL NAVIT C ERO GE I, 220/12	13, 10, 10, 10, ESIS ALTAN ENERAL 17 V	,089.0 ,357.8 ,875.7 MIRA		TAG: UPS: CORF	SELECCIONADO RIENTE INSTAL OTENCIA	JPS D: 20 kVA ADA (A):	38.16A	U	3.65% BICACIÓN: CE	ORRIENT		ECCIÓ	CORREC	CIÓN		ONGITL	JILIIMENTADOR	RE SECCIO		CONDU	EL PUE		PO	TENCI	L.
DESCRIPCIÓN: SISTEMA:	INFON TABLE 3F-4H TG1	DA AL NAVIT C ERO GE I, 220/12	13, 10, 10, 10, ESIS ALTAN ENERAL 17 V	,089.0 ,357.8 ,875.7 MIRA		TAG: UPS: CORF	SELECCIONADO RIENTE INSTAL OTENCIA STALADA	JPS D: 20 kVA ADA (A): FD POTE DEMAN	38.16A 38.16A V DADA	U	3.65% BICACIÓN: CE	ORRIENT DE ROTECCIO		ECCIÓ	CORRECT TE STATE OF THE STATE O	CCIÓN EMPERATU	J		JELIMENTADOR AWG ó Kemil		TENSIÓ	OR DE	EL PUE	DE STAA — RRA		TENCI/	FC
POTENCIA DEM CARGA FUTUR/ PROYECTO: DESCRIPCIÓN: SISTEMA: VIENE DE:	INFON TABLI 3F-4H TG1	NAVIT C ERO GE II, 220/12	13, 10, 10, 10, ESIS ALTAN ENERAL 17 V	,089.0 ,357.8 ,875.7 MIRA		TAG: UPS: CORF	SELECCIONADO RIENTE INSTAL OTENCIA	JPS D: 20 kVA ADA (A):	38.16A 38.16A V DADA	U I (INSTALADA) (E	3.65% BICACIÓN: CE	ORRIENT		ECCIÓ	CORRECT TE STATE OF THE STATE O	CIÓN	J				TENSIÓ	OR DE	EL PUE:	DE STAA — RRA			
POTENCIA DEM CARGA FUTURA PROYECTO: DESCRIPCIÓN: SISTEMA: VIENE DE:	INFON TABLI 3F-4H TG1	NAVIT C ERO GE I, 220/12	13, 10, 10, 10, 10, ESIS ALTAN ENERAL TO V ALUM, Y CONT.	,089.0 ,357.8 ,875.7 MIRA		TAG: UPS: CORF	SELECCIONADO RIENTE INSTAL OTENCIA STALADA	JPS D: 20 kVA ADA (A): FD POTE DEMAN	38.16A 38.16A V DADA	U I (INSTALADA) (E	3.65% BICACIÓN: CE	ORRIENT DE ROTECCIO		ECCIÓ	CORRECT TE STATE OF THE STATE O	CCIÓN EMPERATU	J				TENSIÓ	OR DE NEUTF	EL PUE:	DE STAA RRA			
POTENCIA DEM CARGA FUTURA PROYECTO: DESCRIPCIÓN: SISTEMA: VIENE DE:	INFON TABLI 3F-4H TG1	NAVIT C ERO GE I, 220/12	13, 10, 10, 10, 10, ESIS ALTAN ENERAL TO V ALUM, Y CONT.	,089.0 ,357.8 ,875.7 MIRA		TAG: UPS: CORF	SELECCIONADO RIENTE INSTAL OTENCIA STALADA	JPS D: 20 kVA ADA (A): FD POTE DEMAN	38.16A 38.16A V DADA	U I (INSTALADA) (E	3.65% BICACIÓN: CE	ORRIENT DE ROTECCIO		ECCIÓ	CORRECT TE STATE OF THE STATE O	CCIÓN EMPERATU	J				TENSIÓ	OR DE NEUTF	EL PUE:	DE STAA RRA			
POTENCIA DEM CARGA FUTURA PROYECTO: DESCRIPCIÓN: SISTEMA: VIENE DE:	INFON TABLI 3F-4H TG1	NAVIT C ERO GE I, 220/12	13, 10, 10, 10, 10, ESIS ALTAN ENERAL TO V ALUM, Y CONT.	,089.0 ,357.8 ,875.7 MIRA		TAG: UPS: CORF	SELECCIONADO RIENTE INSTAL OTENCIA STALADA	JPS D: 20 kVA ADA (A): FD POTE DEMAN	38.16A 38.16A V DADA	U I (INSTALADA) (E	3.65% BICACIÓN: CE	ORRIENT DE ROTECCIO		ECCIÓ	CORRECT TE STATE OF THE STATE O	CCIÓN EMPERATU	J				TENSIÓ	OR DE NEUTF	EL PUE:	DE STAA RRA			
POTENCIA DEM CARGA FUTURA PROYECTO: DESCRIPCIÓN: SISTEMA: VIENE DE:	INFON TABLE 3F-4H TG1	NAVIT C ERO GE I, 220/12	13, 10, 10, 10, 10, ESIS ALTAN ENERAL TO V ALUM, Y CONT.	,089.0 ,357.8 ,875.7 MIRA	т.	TAG: UPS: CORF	SELECCIONADO RIENTE INSTAL OTENCIA ISTALADA	JPS D: 20 kVA ADA (A): FD POTE DEMAN	38.16A 38.16A V	U I (INSTALADA) (E	3.65% BICACIÓN: CE	ORRIENT DE ROTECCIO	PROT	ECCIÓ 40 ,	CORRECT TE STATE OF THE STATE O	CCIÓN EMPERATU	J	, m			ON TENSIÓ	ON CONDU OR DE NEUTF	EL PUE:	DE STA A RRA I	FA	FB	FC
POTENCIA DEM CARGA FUTURA PROYECTO: DESCRIPCIÓN: SISTEMA: VIENE DE: VA W CTO.	INFON TABLE 3F-4H TG1	DA AL NAVIT C ERO GE II, 220/12 DLO DLO ASE B C	13, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	,089.0 ,357.8 ,875.7 MIRA	т.	TAG: UPS: CORF	SELECCIONADO RIENTE INSTAL OTENCIA ISTALADA	DPS D: 20 kVA ADA (A): FD POTE DEMAN	38.16A 38.16A V	U I (INSTALADA) (C	3.65% BICACIÓN: CE DEMANDADA A	ORRIENT DE ROTECCIO A	PROT		RUPAMIEN TE	EMPERATU A DE 30°C	,	, m	AWG ó Kcmil	l mm	ON TENSIÓ	ON CONDU OR DE NEUTF	EL PUE:	DE STA A RRA I	FA	FB	FC
POTENCIA DEM CARGA FUTURI PROYECTO: DESCRIPCIÓN: SISTEMA: VIENE DE: VA W CTO.	INFON TABLE 3F-4H TG1	DA AL NAVIT C ERO GE II, 220/12 DLO DLO ASE B C	13, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	,089.0 ,357.8 ,875.7 MIRA	т.	TAG: UPS: CORF	SELECCIONADO RIENTE INSTAL OTENCIA ISTALADA	DPS D: 20 kVA ADA (A): FD POTE DEMAN	38.16A 38.16A V	U I (INSTALADA) (C	3.65% BICACIÓN: CE DEMANDADA A	ORRIENT DE ROTECCIO A	PROT		RUPAMIEN TE	EMPERATU A DE 30°C	,	, m	AWG ó Kcmil	l mm	ON TENSIÓ	ON CONDU OR DE NEUTF	EL PUE:	DE STA A RRA I	FA	FB	FC
POTENCIA DEM CARGA FUTURI PROYECTO: DESCRIPCIÓN: SISTEMA: VIENE DE: VA W CTO.	INFON TABLE 3F-4H TG1	DA AL NAVIT C ERO GE II, 220/12 DLO DLO ASE B C	13, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	,089.0 ,357.8 ,875.7 MIRA	т.	TAG: UPS: CORF	SELECCIONADO RIENTE INSTAL OTENCIA ISTALADA	DPS D: 20 kVA ADA (A): FD POTE DEMAN	38.16A 38.16A V	U I (INSTALADA) (C	3.65% BICACIÓN: CE DEMANDADA A	ORRIENT DE ROTECCIO A	PROT		RUPAMIEN TE	EMPERATU A DE 30°C	,	, m	AWG ó Kcmil	l mm	ON TENSIÓ	ON CONDU OR DE NEUTF	EL PUE:	DE STA A RRA I	FA	FB	FC
POTENCIA DEM CARGA FUTUR.I PROYECTO: DESCRIPCIÓN: SISTEMA: VIENE DE: VA W CTO. TAB. "E" CANTIDAD	INFON TABLE 3F-4H TG1	DA AL NAVIT C ERO GE II, 220/12 DLO DLO ASE B C	13, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	,089.0 ,357.8 ,875.7 MIRA	т.	TAG: UPS: CORF	SELECCIONADO RIENTE INSTAL OTENCIA ISTALADA	DPS D: 20 kVA ADA (A): FD POTE DEMAN	38.16A 38.16A V	U I (INSTALADA) (C	3.65% BICACIÓN: CE DEMANDADA A	ORRIENT DE ROTECCIO A	PROT		RUPAMIEN TE	EMPERATU A DE 30°C	,	, m	AWG ó Kcmil	l mm	ON TENSIÓ	ON CONDU OR DE NEUTF	EL PUE:	DE STA A RRA I WG	FA 363 4	FB	FC 4363
POTENCIA DEM CARGA FUTURI PROYECTO: DESCRIPCIÓN: SISTEMA: VIENE DE: VA W CTO. TAB. "E" CANTIDAD W	INFON TABLE 3F-4H TG1	DA AL NAVIT C ERO GE II, 220/12 DLO DLO ASE B C	13, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	,089.0 ,357.8 ,875.7 MIRA	т.	TAG: UPS: CORF	SELECCIONADO RIENTE INSTAL OTENCIA ISTALADA	DPS D: 20 kVA ADA (A): FD POTE DEMAN	38.16A 38.16A V	U I (INSTALADA) (C	3.65% BICACIÓN: CE DEMANDADA A	ORRIENT DE ROTECCIO A	PROT		RUPAMIEN TE	EMPERATU A DE 30°C	,	, m	AWG ó Kcmil	l mm	ON TENSIÓ	ON CONDU OR DE NEUTF	EL PUE:	DE STA A RRA I WG	FA 363 4	FB	FC 4363
POTENCIA DEM CARGA FUTURI PROYECTO: DESCRIPCIÓN: SISTEMA: VIENE DE: VA W CTO. TAB. 'E' CANTIDAD	INFON TABLE 3F-4H TG1	DA AL NAVIT C ERO GE II, 220/12 DLO DLO ASE B C	13, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	,089.0 ,357.8 ,875.7 MIRA	т.	TAG: UPS: CORF	SELECCIONADO RIENTE INSTAL OTENCIA ISTALADA	DPS D: 20 kVA ADA (A): FD POTE DEMAN	38.16A 38.16A V	U I (INSTALADA) (C	3.65% BICACIÓN: CE DEMANDADA A	ORRIENT DE ROTECCIO A	PROT		RUPAMIEN TE	EMPERATUA DE 30°C	,	m m	AWG ó Kcmil	l mm	ON TENSIÓ	ON CONDU OR DE NEUTF	EL PUE:	DE STA A RRA I WG	FA 363 4	FB	FC 4363
POTENCIA DEM CARGA FUTURI PROYECTO: DESCRIPCIÓN: SISTEMA: VIENE DE: VA W CTO. TAB. 'E' CANTIDAD	INFON TABLE 3F-4H TG1	DA AL NAVIT C ERO GE II, 220/12 DLO DLO ASE B C	13, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	,089.0 ,357.8 ,875.7 MIRA	т.	TAG: UPS: CORF	SELECCIONADO RIENTE INSTAL OTENCIA ISTALADA	DPS D: 20 kVA ADA (A): FD POTE DEMAN	38.16A 38.16A V DADA V 220	U I (INSTALADA) (C A A 38.17	3.65% BICACIÓN: CE DEMANDADA A	ORRIENT DE ROTECCIO A	PROT		CORRECT TO RUPAMIEN R	EMPERATUA DE 30°C	30	m m 20 50	AWG ó Kcmil	l mm	ON TENSIÓ	ON CONDU OR DE NEUTF	EL PUE:	DE STA A RRA I WG	FA 363 4	FB	FC 4363
POTENCIA DEM CARGA FUTURI PROYECTO: DESCRIPCIÓN: SISTEMA: VIENE DE: VA W CTO. TAB. 'E' CANTIDAD	INFON TABLE 3F-4H TG1	DA AL NAVIT C ERO GE II, 220/12 DLO DLO ASE B C	13, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	,089.0 ,357.8 ,875.7 MIRA	т.	TAG: UPS: CORF	SELECCIONADO RIENTE INSTAL OTENCIA SSTALADA W 13,089	DPS D: 20 kVA ADA (A): FD POTE DEMAN	38.16A 38.16A V V V W	U I (INSTALADA) (C A A A A A A A A A A A A A A A A A A	3.65% BICACIÓN: CE DEMANDADA A	ORRIENT DE ROTECCIO A	PROT		CORRECT N RUPAMIEN TR	EMPERATUA DE 30°C	30	m m 20 50	AWG ó Kcmil	l mm	ON TENSIÓ	ON CONDU OR DE NEUTF	EL PUE:	DE STA A RRA I WG	FA 363 4	FB	FC

PROYECTO: INFONAVIT CESI ALTAMIRA LC												LOGALIZACIÓN: ALTAMIRA																		
DESCRIPCIÓN:											TAG:		TAB "F"		UBICACIÓN: CUARTO ELÉCTRICO															
									TABLERO SELECCIONAD																					
VIENE DE:										CORRIENTE INSTALADA		163.98A																		
	PC	DLO	HIDRAHULICA	UE 0.53A	UE 0.68A	UC 7.7A	UC 5.2A	UC 14.9	UP-01	VE	FP	POTENCIA INSTALADA	FD	POTENCIA DEMANDADA		I (DEMANDADA)	CORRIENTE DE			COF	TORES DE RECCIÓN	le	LONGITUE	ALIMENTA DORES	CAÍDA DE TENSIÓN	CONDUCTOR	CONDUCTOR		OTENC	:IA
													1	DEMPTONDA			PROTECCIÓN F	PROT	recció	N	VI TEMPERATU					DEL NEUTRO	TIERRA			
VA	FASE A B C		4,144	137	173	1,974	1,333	3,789	40,222	836		w		w	V	A	Δ			FNTO	RADE 30°C	A	m	AWG ó Kcmi	i e%			FA	FB	FC
W	A B C		3,730	123	156	1,777	1200	3,410	36,200	752				**												AWG	AWG			
CTO.																														Ь—
											-							_	-					+						₩.
HIDRAHULICA		4 6	1								0.9	3,730	0.90	3,357	220	9.79			15		1.00	9.79	15	10	0.42	10	12	1243		_
UP-01 UE-1.2 YUC-1.2	1 :	3 5			2	2			1		0.9	36,200 3.866	0.90	32,580 3.479	220 220	95.00 17.57	118.75 21.97	3 x	125	A 0.80 A 0.80	1.00	95.00 17.57	75 75	1/0	2.41 4.31	1/0 10	12	12066	12067	12067
UE-3.4 YUC-3.4		9 11		-	- 4	1	- 1				0.9	3,066	0.90	2.930	220	14.80			20	A 0.80	1.00	14.80	75	10	3.63	10	12	1933	4000	1628
UE-5.6 YUC-5.6	14 1			2	-	1	2				0.9	2.646	0.90	2,930	220	12.03		2 X		A 0.80	1.00	12.03	55	10	1.56	10	12	1323	1323	
UE-7 Y UC-7	13 1			1			_	- 1			0.9	3.533	0.90	3.180	220	16.06		2 x		A 0.80	1.00	16.06	60	10	1.57	10	12			\vdash
VE-1 Y2	10 .	12								2	0.9	1.504	0.90	1.354	127	11.84			15	A 0.80	1.00	11.84	65	10	1.56	10	12	1700	1707	1504
VE 3 Y 4	2	22								2	0.9	1.504	0.90	1.354	127	11.84	14.80	1 x	15	A 0.80	1.00	11.84	65	10	1.56	10	12		1504	
																												300		300
CANTIDAD			1	4	3	3	3	1	1	4																				
W			3,730	492	468	5,331	3,600	3,410	36,200	3,008																				
VA			4,144	548	519	5,922	3,999	3,789	40,222	3,344																		18631	19533	18675
																							_							
													W	VA						FACTOR I	DE DEMANDA	0.90								
												A INSTALADA	56,239.00	62,487.78						DESBALA	NCEO	4.62%								
											CARG	A DEMANDADA	50,615.10	56,239.00									_							
CARGA FUT												A FUTURA TOTAL	53,145.86	59,050.95	l															

PROYECTO: DESCRIPCIÓN: SISTEMA:		ERO	GEN	SI ALTAM NERAL 7 V	IRA				LOCALIZACI TAG: TABLERO SEI CORRIENTE II	LECCIONADO		ML40016 1B 259.13	UBICACIÓN: CAPACIDAD D	E 400A	CTRIC	0										_			
	POLO FASE A B C		ALUM. Y CONT.		FUERZA	UPS	ELEVADOR	FP		FACTOR DE DEMANDA	POTENCIA DEMANDADA	V	(DEMANDADA	PROTECCIO			H	FACTORE	S DE CORRECCIÓN	le	LONGITUD	ALIME	AWG ó Kcmil	CAÍDA DE TENSIÓN e%	CONDUCTOR DEL NEUTRO			POTEN	IA .
VA W			2	9,936 8,942	62,488 56,239	14,543 13,089	11,778 10.600	\vdash	w		w	v	А	A	PROTECC		FA FA		FT 30°C	Α	m	CANT.				TIERRA	FA	FB	FC
CTO.	1		+	-,		,	10,000								П		П												\vdash
TAB. "N"	1	3	5	1				0.9	8,942	0.80	7,354	220	21.44	26.80	3	x 30	А	0.80	1.00	21.44	55	3	- 8	2.23	8	10	2980	2981	2981
TAB. "F"	2	4	6		1			0.9	56,239	0.90	50,615	220	147.59	184.49	3	x 200	Α	0.80	1.00	147.59	10	3	- 250	0.27	250	6			18747
TAB. "E"	7	9 1	1			1		0.9	13,089	0.80	10,357	220	30.20	37.75	3	x 40	Α	0.80	1.00	30.20	50	3	- 6	1.83	6	10	4363	4363	4363
ELEVADOR	8	10 1	2				1	0.9	10,600	1.00	10,600	220	30.90	38.63	3	x 40	Α	0.80	1.00	30.90	25	3	6	1.46	6	10	3533	3534	3533
	+	+	+												H	+	H											1	
CANTIDAD				1	1	1	1										П									1			
W				8,942	56,239	13,089	10,600																						
VA				9,936	62,488	14,543	11,778																				29622	29624	29624
								CARG	A INSTALAD A DEMANDA	DA		W 88,870.00 78,926.10 82,872.41)				-	FACTOR I	DE DEMANDA ANCEO	0.89 0.01%	}								

3.5-ANEXO 2: DIAGRAMA UNIFILAR

